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ABSTRACT
Computational accelerators, such as manycore NVIDIA GPUs,
Intel Xeon Phi and FPGAs, are becoming common in work-
stations, servers and supercomputers for scientific and engi-
neering applications. Efficiently exploiting the massive par-
allelism these accelerators provide requires the designs and
implementations of productive programming models.
In this paper, we explore support of multiple accelera-

tors in high-level programming models. We design novel
language extensions to OpenMP to support offloading data
and computation regions to multiple accelerators (devices).
These extensions allow for distributing data and computa-
tion among a list of devices via easy-to-use interfaces, includ-
ing specifying the distribution of multi-dimensional arrays
and declaring shared data regions among accelerators. Com-
putation distribution is realized by partitioning a loop iter-
ation space among accelerators. We implement mechanisms
to marshal/unmarshal and to move data of non-contiguous
array subregions and shared regions between accelerators
without involving CPUs. We design reduction techniques
that work across multiple accelerators. Combined compiler
and runtime support is designed to manage multiple GPUs
using asynchronous operations and threading mechanisms.
We implement our solutions for NVIDIA GPUs and demon-
strate through example OpenMP codes the effectiveness of
our solutions for performance improvement.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Accelerators

General Terms
Design, Implementation, Measurement
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OpenMP, Directives, Accelerators, Data Distribution
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1. INTRODUCTION
Heterogeneous computer architectures that combine general-

purpose multicore CPUs with accelerators, e.g., GPUs, high-
density Multiple Integrated Cores (MICs) and FPGA have
been widely adopted in both supercomputers and enterprise
computational servers. These architectures supply massively
parallel computing capabilities provided by accelerators while
preserving the flexibility of CPU accommodating computa-
tion of different workloads. Very commonly and frequently,
computer nodes employ multiple accelerators, of the same or
different types. Multiple accelerators, along with their ad-
ditional memory, allow programmers to speedup their com-
putation further and to solve larger problems than what a
single accelerator could tackle.

High-level programming models, such as OpenACC [2]
and OpenMP [13], have aimed to reduce the effort required
to port an existing sequential application for parallel exe-
cutions. These programming models provide language di-
rectives (pragmas) that programmers can insert into their
CPU codes to indicate a region of code and its data which
can be offloaded onto an accelerator for computation. How-
ever, these models focus on using single accelerator a time for
offloading. Significant user effort is still needed to program
multiple accelerators. For example, to use OpenMP 4.0 ac-
celerator model for multiple devices1, multiple offloading re-
gions in a program, each with associated data environment
need to be created. This requires programming, mostly done
manually, for decomposing data and computation among ac-
celerators, taking caring of boundary condition and data ex-
changes across accelerators, and synchronizations between
them. While this approach is flexible, simpler approach to
expressing semantics of work sharing among multiple devices
would be desirable and helpful to improve the productivity
of using multiple accelerators.

In this paper, we propose language extensions and com-
piler and runtime support for portable and productive pro-
gramming for multiple accelerators. Our extensions use OpenMP
as a baseline interface, and the experiments are performed
using NVDIA GPUs. But we believe the functionality of
these extensions can be easily adapted for other base lan-
guages, and the solutions presented in this paper are appli-
cable to other types of accelerators. We demonstrate effec-
tiveness of our solutions for the improvement of both per-
formance and scalability using three programs. Our paper
has the following contributions:

1We use the OpenMP term “device” interchangeably with
“accelerator”.

170



• Language extensions for specifying multiple devices as
offloading targets for OpenMP; for specifying the dis-
tribution of multi-dimensional arrays onto a device vir-
tual topology; for specifying shared data region (halo
region) between array subregions between devices; and
for specifying the distribution of loop iterations among
multiple devices.

• Techniques of compiler and runtime support for im-
plementing these extensions, including mechanisms of
memory management and data marshal/unmarshal for
mapping array between noncontiguous memory space
and contiguous memory buffer of array subregions, and
for halo regions residing on multiple accelerators; the
support for reduction operations and kernel code gen-
eration; and the support for multiple device manage-
ment.

• The development of the two approaches to interact-
ing with multiple GPUs using one or multiple user
threads with asynchronous or synchronous operations.
Detailed performance analysis are provided for these
two approaches.

The remainder of this paper is organized as follows: The
motivation is given in Section 2. Section 3 presents our
multi-accelerator language extensions to OpenMP. Section 4
describes our prototype implementation. We present our
evaluation results in Section 5. Section 6 presents related
work. Section 7 concludes the paper.

2. MULTIPLE ACCELERATOR SUPPORT
USING EXISTING MODELS

High-level programming models for accelerators such as
OpenMP and OpenACC provide users language directive
(pragma) to annotate regions of code and data environment
to be copied to an accelerator for execution. These mod-
els assume a CPU node as a host connected with one or
more identical accelerators as target devices. The execu-
tion model is host-centric: a host device “offloads” data and
code regions to accelerators for execution, but the accelera-
tors do not initiate communication with hosts. For example,
OpenMP provides the target construct for specifying an of-
floading code region. The map clause of the target directive
defines the data and the mapping directions between a host
and a device. By default, mapped data live from the start
of the target region to the end of the region. Data map-
ping often involves data movement as host and device are in
different memory space in most accelerator architectures.
In Figure 1, we include an AXPY example (vector ad-

dition) from line 1 to 7 that conforms to the OpenMP 4.0
standard. The target directive at line 2 has a device(0) clause
to indicate that the immediately following code region, the
for loop, should be offloaded to the first accelerator. The
map clauses specify that the current contents of array y and
x should be available on the device when offloaded execution
begins, prescribed by the to and tofrom modifier. The con-
tent of y must be available on the host when the offloading
completes, dictated by the from part of the tofrom modi-
fier for array y. The parallel for directive at line 4 simply
means the loop can be executed in parallel using OpenMP
worksharing.
The current standards for programming on accelerators

in OpenMP or OpenACC, only support for offloading code

1 void axpy_ompacc(REAL* x, REAL* y, int n, REAL a) {
2 #pragma omp target device (0) map(tofrom: y[0:n]) \
3 map(to: x[0:n],a,n)
4 #pragma omp parallel for shared(x, y, n, a)
5 for (int i = 0; i < n; ++i)
6 y[i] += a * x[i];
7 }
8
9 /* use omp parallel , i.e. each host thread

10 * responsible for one dev */
11 void axpy_mdev_v1(REAL* x, REAL* y, int n, REAL a) {
12 int ndev = omp_get_num_devices ();
13 #pragma omp parallel num_threads(ndev)
14 {
15 /* chunk it for each device */
16 int devid = omp_get_thread_num ();
17 omp_set_active_device(devid );
18 int remaint = n % ndev;
19 int esize = n / ndev;
20 int psize , starti;
21 if (devid < remaint) {
22 psize = esize +1;
23 starti = psize*devid;
24 } else {
25 psize = esize;
26 starti = esize*devid+remaint;
27 }
28 #pragma omp target device (devid) \
29 map(tofrom: y[starti:psize]) \
30 map(to: x[starti:psize],a,psize)
31 #pragma omp parallel for shared(x, y, psize , a)
32 for (int i = 0; i < psize; ++i)
33 y[i] += a * x[i];
34 }
35 }
36
37 void axpy_mdev_v2(REAL* x, REAL* y, int n, REAL a) {
38 #pragma omp target device (*) \
39 map(tofrom: y[0:n] dist_data(BLOCK)) \
40 map(to: x[0:n] dist_data(BLOCK),a,n)
41 #pragma omp parallel for shared(x, y, n, a) \
42 dist_iteration(BLOCK)
43 for (int i = 0; i < n; ++i)
44 y[i] += a * x[i];
45 }

Figure 1: AXPY examples; axpy ompacc: AXPY
for a single accelerator conforming to the OpenMP
standard; axpy mdev v1: AXPY for multiple accel-
erators using OpenMP parallel and target directives;
axpy mdev v2: AXPY for multiple accelerators us-
ing our language extensions.

and data region to one device a time. To leverage multi-
ple accelerators in a single program, programmers will need
to manually decompose work and partition data to exploit
multiple devices if using those approaches. The AXPY func-
tion from line 10 to 35 in Figure 1 demonstrate one way to
achieve this. This function creates a parallel region with the
number of threads equal to the number of devices (lines 12
and 13). For each device, a host thread manages its tar-
get region (lines 28 to 31). The codes for partitioning data
and distributing it to each device (lines 16 to 27) must be
provided by users. Obviously, the code for this simple data
decomposition for multiple devices could be generated by
compilers. For larger applications, such code, if written by
hand, could become much more complex when programmers
have to deal with issues in addition to partitioning arrays,
e.g. to handle inter-device operations such as reductions and
data exchanges.

The language extensions we proposed in this paper are
designed to address these challenges and to improve the
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productivity of using multiple accelerators. As an exam-
ple of the design, the function in lines 37-45 of Figure 1
show the multi-accelerator implementation of the AXPY
program. Compared to the single device version in lines
1-7, the map(tofrom: y[0:n] dist data(BLOCK)) and map(to:
x[0:n] dist data(BLOCK), a, n) clauses in line 39 and 40 de-
note the even partitioning and distribution of array y[0:n]
and x[0:n] across multiple target devices, i.e. the BLOCK
distribution policy. Scalars a and n each will have a copy
in each of the target device, taking the default distribution
policy. Similarly, the dist iteration(BLOCK) clause for the
parallel for loop in line 41 indicates that the loop’s iteration
space is evenly distributed among the devices. Thus, each
device processes the subset of the iterations that have the
same range as the array subregion of x that is distributed
to it because both use the same distribution policy on the
same range. A more complicated example, the Jacobi itera-
tion kernel, is shown in Figure 2. For the rest of this section,
we will use this example to highlight the language design of
our solutions.

3. LANGUAGE EXTENSIONS FOR MULTI-
PLE ACCELERATORS

High-level programming languages leverage compiler and
runtime support to improve the productivity and portability
of parallel programming. Directives are high-level language
constructs that programmers can use to provide useful hints
to compilers to perform certain transformation and opti-
mization on annotated code regions. The use of directives
can significantly improve programming productivity. The
support for multiple accelerators needs extensions to an ex-
isting single-device language to provide at least the following
functionalities:

1. Specification of multiple target devices for offloading,
which could be an explicit list of devices, or a virtual
topology of multiple devices. For example, organizing
a list of accelerators in a 2-dimensional Cartesian grid
virtual topology could facilitate users to write code for
distributing a 2-dimensional array onto them.

2. Specification of data mapping and distribution from
host to multiple devices and the data mapping and
sharing between devices. This feature can also support
data alignment and halo data exchanges.

3. A mechanism to distribute and to coordinate com-
putation work across multiple devices, including: de-
composition of data parallel region among devices, re-
ductions; synchronizations; and event-driven compu-
tations across accelerators.

Prior work has studied principles of some of those seman-
tics and has provided solutions using different programming
interfaces for parallel programming. For example, MPI [6]
provides library calls that create a virtual topology from
processes of a communicator. High Performance Fortran
(HPF) [16] includes data distribution and alignment inter-
faces for arrays, and approaches to create processor topol-
ogy. Global Arrays (GA) [1] provides library calls that cre-
ate arrays that span multiple distributed memory spaces,
and calls that specify halo regions to exchange data between
nodes. However, for accelerators, because of the offloading

Table 1: Examples of device clause extensions to
specify multiple targets and to create device virtual
topology
device(0:10), device(:10) Select 10 devices starting with device

id 0
device(5:3), device(5,6,7) Select 3 devices starting with device

id 5
device(*) Select all available devices
device(0:10 &
OMP DEVICE NVGPU)

Select the OMP DEVICE NVGPU
type devices from the first 10 devices

device(0:4) topol-
ogy(top1[2][2])

Select the first 4 devices and cre-
ate a 2-d Cartesian virtual topology
named top1.

device(4:8) topology([*][*]) Select 8 devices to create a system-
chosen 2-d Cartesian.

natures of accelerator architectures and the inability to ini-
tiate communication from accelerators to the host or other
devices, we believe these challenges require new solutions to
both programming interfaces as well as novel implementa-
tions.

When designing language extensions for these function-
alities, one principle we follow is to make the interface as
simple as possible for common usage, but also flexible and
powerful enough to express rich set of semantics required
by complicated and large applications. We use the latest
OpenMP as base language for the design.

3.1 Device Types and Virtual Topology
The device clause of the target-family directives in OpenMP

standards takes a single integer as a device identification
number (id) for the offloading target. We extend the device
clause to specify more than one devices, as Table 1 shows
through examples. Multiple devices on each node could be of
the same or different types. We introduce a name for specify-
ing each type of the accelerators, e.g. OMP DEVICE NVGPU
for NVIDIA GPUs. Other type of accelerators include In-
tel MIC architectures, AMD APUs, FPGAs and DSPs. A
device is abstracted and identified through an integer iden-
tification number (id), and the implementation provides ad-
ditional APIs to query the device type from its id, and to
query its system identification and properties.

The extensions also allow to create a virtual topology of
multiple devices, a concept borrowed from MPI and HPF.
The examples show how to use the extensions to create a
Cartesian virtual topology from a list of devices. A virtual
topology could be named so we can simply reuse it later.
Virtual topology will help users to specify mapping of a mul-
tiple dimensional array to a set of devices in a more intuitive
and productive way.

3.2 Data Distribution
When offloading a parallel region processing one or mul-

tiple multi-dimensional arrays to multiple devices, it often
requires partitioning the data and the work among the de-
vices. Our solution for the data distribution extends the
map clause to support partitioning of multi-dimensional ar-
rays and to distribute (data movement) each partition onto
devices. The language interface allows users to specify how
to distribute an array onto a virtual topology of multiple
devices and also provide users with options to control which
dimension of the array maps to which dimension of the topol-
ogy.

The extension is the dist data clause, as also shown in
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1#pragma omp target data device (*) \
2 map(to:n, m, omega , ax, ay, b,\
3 f[0:n][0:m] dist_data(BLOCK ,*)) \
4 map(tofrom:u[0:n][0:m] dist_data(BLOCK ,*))\
5 map(alloc:uold [0:n][0:m] \
6 dist_data(BLOCK ,*) halo (1,))
7while ((k<=mits )&&( error >tol))
8{
9#pragma omp target device (*)

10#pragma omp parallel for collapse (2) \
11 dist_iteration(BLOCK)
12 for(i=0;i<n;i++)
13 for(j=0;j<m;j++)
14 uold[i][j] = u[i][j];
15
16#pragma omp halo_exchange (uold)
17
18#pragma omp target device (*)
19#pragma omp parallel for private(resid) \
20 collapse (2) reduction (+: error) \
21 dist_iteration(BLOCK)
22 for (i=1;i<(n-1);i++)
23 for (j=1;j<(m-1);j++)
24 {
25 resid = (ax*(uold[i-1][j] + uold[i+1][j])\
26 + ay*(uold[i][j-1] + uold[i][j+1])\
27 + b * uold[i][j] - f[i][j])/b;
28 u[i][j] = uold[i][j] - omega * resid;
29 error = error + resid*resid ;
30 } // the rest code omitted ...
31}

Figure 2: Jacobi kernel using our proposed multi-
accelerator directives

Table 2: Distribution policies
DUPLICATE The full range of this dimension is du-

plicated into multiple copies, one for
each device. This is the default policy
if no policy is specified.

BLOCK(n) Divides the indices in a dimension into
contiguous, equal-sized blocks of size
N/P (P is the number of devices in the
target dimension of the topology) and
each device takes one block (n is the
number of element in the block; de-
fault: n= N/P)

CYCLIC(n) Maps every ith block to number i de-
vice of the target dimension of the de-
vice topology. (default: n=1)

previous AXPY example. The full syntax of this clause
is “dist data(dist policy[,. . . ]) [topology (dist target)]”. The
dist policy parameters are used to specify the distribution
policy for each dimension of the mapped array. We have
borrowed the interfaces from HPF for specifying distribu-
tion policies, shown in Table 2. The dist target parameters
denote the target device of this distribution, either as a vir-
tual topology of devices, or one or multiple device ids. By
default, if no topology and targets are specified, the tar-
gets are the device targets of the associated target-family
directive for the map clause. Table 3 shows examples that
demonstrate our design. Figure 2 also includes such usages
at lines 2 and 3.

3.3 Halo Regions and Halo Update
The approach we have discussed so far for parallelizing

many scientific applications to use multiple accelerators is

Table 3: Examples of using dist data clause extensions
to specify data distributions
device (0:4) map(to:x[0:n],a,n) Implicitly map and distribute the

full array x and scalars a and n to
each of the four devices

device (0:4) map(to:x[0:n]
dist data(DUPLICATE))

Explicitly map and distribute
the full array x to each of the four
devices.

device (0,1) map(to: x[0:n/2]
dist data(DUPLICATE)
topology (0,1), x[n/2:n]
dist data(DUPLICATE) topol-
ogy (1),a,n))

Distribute the first half of array
x to both device 0 and 1, and
the second half to device 1. Map
scalars a and n to each of the two
devices.

device (0:2) map(to: x[0:n]
dist data(BLOCK))

BLOCK distribution (evenly
partition) of array x to the two
devices.

device(0:4)
map(to:A[100][0:n][64:1024]
dist data (DUPLICATE ,
BLOCK, DUPLICATE))

Partition array A from its second
dimension using BLOCK policy
among the 4 devices. Map the
full range of the first dimension
and the specified range (64:1024)
of the first dimension in each par-
tition to each device.

device(0:4) topology([2][2])
map(to:A[100][100][0:64]
dist data (BLOCK, BLOCK,
DUPLICATE)

Distribute the first and second
dimensions of array A across the
first and second dimensions of
the device topology, both using
BLOCK policy. Map the speci-
fied range of the third dimension
(0:64) in each partition to each
device.

device(0:4) topology([2][2])
map(to:A[100][n/2:n/2][64:64]
dist data (DUPLICATE, DU-
PLICATE, BLOCK) topology
([][*])

Partition only the third dimen-
sion of array A according to the
second dimension of the device
topology using BLOCK policy.
Map the full and specified range
of the first and second dimen-
sions of A in each partition. For
the first dimension of the device
topology, map the corresponding
partition to all devices with the
same coordinates as of its second
dimension.

still the traditional domain decomposition method, i.e. to
distribute the work among different processing elements. For
a large subset of those applications, e.g. stencil computation
on regular grids, decomposed sub-domains logically overlap
at the boundaries and the overlapped region are updated
regularly with neighbor values during the computation. The
overlapping regions are called ghost or halo regions and the
operations that perform the update and data exchange are
often referred to as halo update.

The extensions we developed include a halo clause to spec-
ify halo regions and a halo update directive for halo update
operations. Halo regions are part of data distribution anno-
tation, and it is only applied to BLOCK distribution policy
for obvious reasons. When using the halo clause, halo re-
gions are specified using the number of array elements in
each dimension. The clause also allows for specifying the
halo regions for left (descending index) and right (ascend-
ing index) neighbors separately, and for two types of edg-
ing policies (periodic and reflecting) for dealing with halo
regions at the dimension edges of the original array. For
1-element periodic edging halos of array, e.g. A[n], the
right halo to A[n-1] is A[0] and left halo to A[0] is A[n-
1]. For reflecting edging halos, the right halo to A[n-1]
is A[n-2] and left halo to A[0] is A[1]. The full syntax
for the halo clause is “halo (#halo elements[:edging policy]|
#right halo elements[:edging policy] [,. . . ]”. The examples
in Table 4 show the use of the clause.
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Table 4: Examples of using halo clauses and halo up-
date directives
map(to:A[100] [100]
[100] dist data (BLOCK,
BLOCK, DUPLI-
CATE) topology([2][4])
halo(2:periodic,4,))

Distribute array A onto 2x4 device topol-
ogy. BLOCK distribution policy is ap-
plied for the first and second dimension.
For the first dimension, 2 elements are
defined as a halo region with neighbors
from both descending index (left) and as-
cending index (right) directions. Periodic
edging policies is selected. For the sec-
ond dimension, 4 elements for both left
and right neighbors and non-edging pol-
icy define the halo regions.

map(to:A[100][100][100]
dist data(BLOCK,
BLOCK,DUPLICATE)
topology([2][4])
halo(2:reflecting| 3:peri-
odic,4,))

Similar to the above example but speci-
fies different halo region sizes and edging
policies for left and right neighbors of the
first dimension. The | symbol is used to
separate left and right halos.

halo update left(A[*][]) Update the left halo region in the first
dimension from neighbors.

halo update right(A[][*]) Update the right halo region in the sec-
ond dimension.

halo update left-
right(A[*][*])

Update left halo regions first and then
right ones in the first and second dimen-
sions.

halo update leftright(A,
B, C)

Update the left and then right halo re-
gions in all dimensions that have halo re-
gion specified for the three arrays.

halo exchange (A, B, C) Simplified directive for the above one,
i.e. halo exchange is the same as
“halo update leftright”

The halo update directive takes parameters of update di-
rections and updating array and dimensions. The full syn-
tax is “halo update update direction(array dims[,. . . ])”. The
value for update direction could be one of left, right, left-
right and rightleft. It is important to note that halo up-
date operations among multiple devices are collective oper-
ations involving a barrier-like synchronization between de-
vices, which may incur high overhead. To allow for updating
left and right halo separately gives users fine-grained control
of coordinating computations and data movement. The ex-
amples in Table 4 show the use of this directive.
The Jacobi kernel example in Figure 2 also uses this syn-

tax to specify a halo region for array uold in line 5 and 6.
The uold array is evenly distributed among the devices and
the halo(1,) clause specifies one-column as the halo region,
in both the left and right directions. The halo exchange di-
rective in line 16 makes calls to perform halo data exchange.

3.4 Loop Iteration Distributions
When distributing a parallel loop among multiple devices,

the loop iteration space must be divided among the devices.
In OpenMP worksharing construct, the schedule clause is
provided for specifying how the loop iteration space should
be scheduled among threads of a team. This principle ap-
plies to the loop iteration distribution among multiple de-
vices. However, users must be careful because incorrect dis-
tribution of loop iterations may lead to accesses to array
subregions that are not distributed to that device.
The language extensions we introduced to achieve this

is the dist iteration clause for a parallel loop. This syn-
tax and semantics of this clause is similar to dist data if
a level of loop iterations is treated as a dimension of an ar-
ray. The full syntax is“dist iteration(dist policy[,. . . ]) [topol-
ogy (dist target)]”. The values allowed for dist policy in-

cludes BLOCK, CYCLIC and DUPLICATE. For example,
the BLOCK distribution specifies that the loop iteration
space will be evenly distributed across the selected dimen-
sion of the device virtual topology. Line 19 of Figure 2 shows
an example with this clause. This approach gives users a
simple interface to partition and distribute a parallel loop
among multiple devices.

The optional topology(dist target) clause for both dist data
and dist iteration is used to select the distribution dimensions
of either a pre-defined topology or a new topology. Be de-
fault, if no topology is present, the two dist * clause will use
the topology defined in the device . . . topology of the target-
family directives.

The extensions we introduced do not break the syntax
and semantics of the target directives in the OpenMP stan-
dard that support offloading onto single device. We achieve
this by carefully designing the default behavior of these ex-
tensions. For example, the default distribution policy, The
support of using multiple devices using these extensions

4. COMPILER AND RUNTIME SUPPORT
One of our design principles of these language extensions

is to make the programming interfaces simple, but expres-
sive enough to enable the creation of portable programs with
minimum user efforts. The implementation of these exten-
sions relies on advanced compiler transformation and novel
runtime techniques. Essentially, a compiler will automate
the generation of codes of runtime calls for working with
multiple devices, including functions for preparing devices,
handling data movement, distributing data and computa-
tion, book-keeping details of managing multiple accelerators,
and so on.

4.1 Overview
Our current implementation targets NVIDIA GPUs and

generates CUDA code, though the solutions should be gen-
erally applicable to other types of accelerators. We use the
HOMP [11] (Heterogeneous OpenMP) compiler as a baseline
for the implementation.

The implementation takes an incremental, two-stage trans-
lation approach: the first stage is the translation from coding
using the proposed directives and clauses in this paper into
standard OpenMP 4.0 code using single device directives
and clauses (similar to the translation from axpy mdev v2()
to axpy mdev v1() function in Figure 1), plus necessary run-
time calls for distributing data and loop iterations. The
second stage is the C/CUDA code generation from the stan-
dard single-device OpenMP code using the HOMP compiler.
Compared to a single stage translation which directly gen-
erates C/CUDA code from the input codes using multiple
device extensions, this incremental translation approach has
several benefits: 1) We can reuse the existing compiler and
runtime support for single device in HOMP; 2) Debugging
the compiler and runtime implementation becomes simpler
when being divided in two simpler stages; 3) As a source-to-
source compiler, the results of the first stage translation can
be compiled with any other standard OpenMP 4.0 compilers
to support multiple devices.

4.2 CUDA Kernel Code Generation
Code generation from a parallel loop to a CUDA kernel is

performed by the HOMP compiler. The CUDA kernel uses
a round-robin scheduler to dispatch loop iterations batch by
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batch to all the threads of a CUDA kernel that will exhibit
coalesced memory access behavior by the threads for opti-
mal performance. The Figure 3 shows the CUDA kernel for
the inner Jacobi iterative algorithm of Figure 2. The double-
nested loops in the source code (line 18 to 30 in Figure 2) are
collapsed into a single loop as requested by the collapse(2)
clause of the input code. A round-robin scheduling is real-
ized by a call to XOMP static sched init that initializes the
scheduler, and the following while (one batch per iteration)
loop after the initialization. At the end of this kernel, per-
block reduction is performed as shown at line 43.

4.3 Multiple Device Management
Managing multiple accelerators from a host includes tasks

such as maintaining queues that store offloading request,
launching kernels onto devices, and initiating data move-
ment operations between the host and devices, etc. Interac-
tions with GPU accelerators, could often be done through ei-
ther synchronous operation (blocking the calling CPU thread)
or asynchronous operations. Given a multi-threaded run-
time environment, there are several approaches for manag-
ing multiple devices.

1. Using a single user-level thread to manage multiple de-
vices using synchronous operations. This is apparently
a simple approach and commonly used for dealing with
one accelerator. However, it will limit the parallel ca-
pabilities between multiple devices because the thread
has to wait for the completion of tasks of one device
before doing anything with another device.

2. Using multiple user-level threads, or OpenMP threads
to manage multiple target devices, and each thread
uses synchronous operations to interact with each de-
vice. This approach has the advantage of parallel in-
teraction with devices to achieve parallelism in term of
multiple accelerators. However, the user-level threads
are still blocked to wait for the completion of acceler-
ator tasks and cannot do any other work.

3. Using one user-level thread to manage all the target
devices, but using asynchronous operations to inter-
act with devices. The asynchronous interactions will
allow parallel launching of device tasks to maximize
the utilization of all devices. However, since this user-
level thread still needs to wait for the completion of
the device operations at some point of the execution,
this thread will not be able to do any useful work while
waiting for the completion of these operations.

4. Using one or multiple daemon threads (instead of user
threads) to manage one, or multiple, or all of the de-
vices. Apparently, this approach will not block on any
user-level thread, theoretically. But in most scenarios,
user-level threads often have to wait for the completion
of device tasks before proceeding the program execu-
tion. Thus, in reality, the advantage of this approach
may not be very beneficial.

We choose the second approach in our implementation
since it is consistent with our two-stage translation method.
Multiple OpenMP threads are used to manage multiple tar-
get devices. Each OpenMP thread performs synchronous
operations to interact with other devices. The third ap-
proach is also chosen as a baseline choice for comparison.

1 __global__ void OUT__1__10550__(int start_n , int n,int m,float omega ,float ax ,\

2 float ay ,float b,float *_dev_per_block_error ,\

3 float *_dev_u ,float *_dev_f ,float *_dev_uold)

4 {

5 // variable declarations , omitted here ...

6 // CUDA 1-D thread block:

7 int _dev_thread_num = gridDim.x * blockDim.x;

8 int _dev_thread_id = blockDim.x * blockIdx.x + threadIdx.x;

9
10 int orig_start =start_n;

11 int orig_end = n*m-1;

12 int orig_step = 1;

13 int orig_chunk_size = 1;

14
15 // use a round -robin scheduler to schedule the loop iterations

16 XOMP_static_sched_init (orig_start , orig_end , orig_step , orig_chunk_size , \

17 _dev_thread_num , _dev_thread_id , \

18 & _dev_loop_chunk_size , & _dev_loop_sched_index , & _dev_loop_stride );

19 while (XOMP_static_sched_next (& _dev_loop_sched_index , orig_end ,orig_step , \

20 _dev_loop_stride , _dev_loop_chunk_size , _dev_thread_num , \

21 _dev_thread_id , & _dev_lower , & _dev_upper ))

22 {

23 // collapsed two level of loops

24 for (ij = _dev_lower; ij <= _dev_upper; ij ++) {

25 // restoring to original two level loop indices

26 _dev_i = ij/(m-1);

27 _dev_j = ij%(m-1);

28
29 // boundary check

30 if (_dev_i >= start_n && _dev_i < (n) && _dev_j >=1 && _dev_j < (m-1))

31 {

32 _p_resid = ((((( ax * (_dev_uold [( _dev_i - 1) * MSIZE + _dev_j] + \

33 _dev_uold [( _dev_i + 1) * MSIZE + _dev_j ])) + (ay * \

34 (_dev_uold[_dev_i * MSIZE + (_dev_j - 1)] + \

35 /* some terms omitted here */ _dev_f[_dev_i * MSIZE + _dev_j ]) / b);

36 _dev_u[_dev_i * MSIZE + _dev_j] = (_dev_uold[_dev_i * MSIZE + _dev_j] \

37 - (omega * _p_resid ));

38 _p_error = (_p_error + (_p_resid * _p_resid ));

39 }

40 }

41 }

42 // inner thread block reduction

43 xomp_inner_block_reduction_float(_p_error ,_dev_per_block_error ,6);

44 }

Figure 3: Translated Jacobi: GPU side stencil com-
putation

4.4 Distribution of Array and Loop Iteration
For programming languages such as C and Fortran, a

multiple dimensional array is stored in contiguous memory
space. When distributing an array onto multiple accelera-
tors, only the partition will be moved to and from a device,
not the whole array. The runtime is responsible for array
partition and creating an array subregion of each partition,
referred to in the runtime as a “data map”. A data map in-
cludes information for the original array, subregion bound-
ary, halo region if existing, and the mapped array region and
memory space on the device. An array subregion is in a con-
tiguous rectangular space, but the data of this subregion is
not necessarily in a contiguous memory space. When mov-
ing data of an array subregion between a host and a device,
or between two devices, runtime could make multiple data
movement calls, one for each contiguous segment from the
source location to its destination. In another approach, the
runtime only makes one call for the actual data movement
between host and device, or between devices. However, for
array subregions in non-contiguous memory space, runtime
will need to allocate a temporary contiguous memory space
and copy data from noncontiguous memory space to the con-
tiguous temporary memory space (referred to as data mar-
shaling) before the actual movement between devices and
host. Conversely, there is a need to restore data from a con-
tiguous memory space to the memory of its original array
subregion(referred to as data unmarshalling). Our runtime
system takes the second approach and maintains an internal
buffer for data marshalling and unmarshalling.

The distribution of array and loop iteration, and the map-
ping of continuous memory space to multiple memory space
on the devices, will change the way we access the subregion
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of the map on the device as compared to the original ref-
erence to array. Certain offset (positive or negative) and
boundary check will be needed to ensure the correctness
of the code. The compiler transformations will guarantee
array references to its original array index spaces are prop-
erly translated to references to the array subregion that is
mapped to each device. We also use internal bookkeeping
variables and their corresponding runtime functions to keep
track of the mapping.

4.5 Halo Regions and Reductions
To handle halo regions, the runtime duplicates boundary

elements for each associated array subregion. For a halo re-
gion lives in noncontiguous memory space, a buffer will be
created in the shared memory space of the GPU and cor-
responding CUDA threads will be responsible to copy the
elements of halo region to the buffer. The halo region ex-
change is implemented through asynchronous CUDA peer
access operations that do not involve the host if the hard-
ware supports this feature. For those hardware without this
feature, runtime will perform a two stage of data movement
involving a host buffer as relay of data movement between
two devices. The runtime will detect the peer access capa-
bility of the hardware and decide which exchange option to
use.
Reduction using multiple accelerators is implemented through

a three-level reduction process for GPUs: 1) the inner CUDA
thread block level reductions performed on GPUs 2) the per-
device reduction performed as an asynchronous call back
operation at host from the results of the inner reduction.
and 3) the global level reduction done on the host from
the results of per-device reductions performed by a simple
loop. The per-device reduction technique is similar to the
approach we developed for OpenACC [21]. We are able to
use shared memory in the inner block reduction for improved
performance.

5. EVALUATION
Three scientific kernels, AXPY, Jacobi and matrix mul-

tiplication, are ported to evaluate our initial implementa-
tion. The machine used for this study has dual quad-core
Intel Xeon 5530 processors (8 cores in total) running at 2.4
GHz with 24GB DDR3 ECC memory. With hyperthreading
support, each node can launch a maximum of 16 OpenMP
threads. Four NVIDIA Tesla C2050 Fermi GPGPUs are
installed, with CUDA version 5.5 driver as its software envi-
ronment. Each GPU has 448 GPU cores and 3 GB GDDR5
memory.
We reported two sets of results in this paper. First, the

performance of using two different multiple device manage-
ment approaches discussed before is reported, one user-level
thread per accelerator and only one user-level threads for
all accelerators. Secondly, we reported the total execution
time of each offloaded code region with each configuration
(a combination of the number of GPU devices and a prob-
lem size). This execution time includes costs for memory
allocation and data transferring, kernel execution time, and
cost for CPU book-keeping and synchronizations for devices.
All three benchmarks show good scalability when exploiting
multiple GPUs.

5.1 Comparison of the Two Mechanisms of Man-
aging Multiple Accelerators

The two mechanisms include a baseline approach (opt1):
one OpenMP thread interacts with all the GPUs using asyn-
chronous operations; and another approach (opt2): multiple
OpenMP threads are designated and one thread is only talk-
ing with one GPU using synchronous operations. The per-
formance comparison of the two mechanisms are shown as
speedup in Figure 4, Figure 5 and Figure 6. The one thread
per GPU option (opt2) shows superior performance com-
pared to the baseline option using only one OpenMP thread
in interacting multiple GPUs.

However, the performance ratio does not show linear scal-
ability with increment in the number of GPUs. The root
cause is in the limitation in hardware. The 4 GPUs in our
machine share a single PCIe switch linked with a single QPI
link to the chips. The shared datapath will easily become
a bottleneck when large amount of memory movements and
kernel launching operations flood to the 4 GPUs through
the QPI link and the PCIe switch. Our kernels all have well
balanced data parallel code regions, and thus the offloading
of the kernels to GPUs happens in this flooding fashion. As
a result, even those operations of interacting with all the
GPUs are fully parallelized by the threading mechanisms,
some operations will be serialized by the hardware. Increas-
ing the number of GPUs will add the amount of serialized
memory operations, thus increasing the contentions. This
will impact the total execution time, thus the scalability. We
have performed detailed profiling of the multiple GPU exe-
cution using NVIDIA Visual Profiling tools and the profiling
confirmed this. The lesson learned from this experiment is
that to achieve scalable speedup using multiple GPUs in one
system will require a scalable hardware bus system.

With a higher performance delivered, we choose one thread
per GPU option (opt2) in the evaluation for the following
performance reports.

Figure 4: AXPY performance comparison of us-
ing two device management mechanisms(OPT1: one
thread for all GPUs, OPT2: one thread per GPU

5.2 Performance of using Multiple GPUs
AXPY is a combination of scalar multiplication and vec-

tor addition, Y ← α ∗ X + Y , where X and Y are vectors.
The computation of AXPY has no data dependence and
can easily be parallelized. Figure 7 shows the performance
results for AXPY kernel. Overall, it shows good speedup
from 1 GPU to 2 GPUs, but the speedup is not impressive

176



Figure 5: Matrix Multiplication performance com-
parison of using two device management mecha-
nisms(OPT1: one thread for all GPUs, OPT2: one
thread per GPU

Figure 6: Jacobi performance comparison of us-
ing two device management mechanisms(OPT1: one
thread for all GPUs, OPT2: one thread per GPU

from 2 to 3 or from 3 to 4 GPUs. Even not reported in the
figure, we also collected the results of its OpenMP version
using 8 threads, and it outperforms the versions using single
and multiple GPUs simply because the amount of compu-
tation in AXPY is so trivial that the total execution time
will be dominated by data movement overhead, as shown in
Table 5. The large gap between data movement cost (map
to and from) and computation time make the overlapping of
the computation and data movement trivial for improving
performance by increasing number of GPUs because of the
serialized data movement imposed by the hardware limita-
tion discussed above. Therefore, executions with more than
2 GPUs accumulate higher runtime overhead in the AXPY
study, as shown by the marginal performance improvement
for 3 and 4 GPUs.

Table 5: Break down execution time for AXPY with
1 GPU
map to (X & Y) computation map from (Y) total GPU time

27.31 1.06 15.77 44.14

Matrix multiplication, Cij =
∑n

k=0 Aik ∗Bkj , has a O(n3)
complexity in the computation. It is known that GPUs can
deliver higher performance compared to parallelization using

Figure 7: Performance result for AXPY

multi-threading on CPUs. To utilize multiple accelerators,
three data distribution strategies of the associated matri-
ces are implemented. 1) This first strategy uses row-based
BLOCK distribution policy for the matrix A and C. Each
accelerator device owns a block of rows of matrix A and
whole matrix B in its memory. The distributed data will
be used to compute a subset of matrix C in each individual
device. 2) The second strategy is similar to the first one but
uses column-based BLOCK policy. Each accelerator device
is assigned the whole matrix A and a block of columns of
matrix B. A subset (the same amount of columns as that of
B) of matrix C can be updated in each accelerator. 3) The
last strategy performs BLOCK distribution for both row
and column of matrix C. Matrix A is BLOCK partitioned
in rows and matrix B is BLOCK partitioned in columns.
Each accelerator device can update a row-column subregion
BLOCK of matrix C. For the two-dimensional matrices of
the three that are stored in memory in row-major, the last
two partition strategies will create array subregions that will
not reside in a contiguous memory space. Data marshaling
and unmarshalling will be required when mapping the array
subregions to and from each device.

We observed minor performance differences among the
three data distribution strategies, and thus only include the
performance results of row-based partitioning strategy. This
strategy requires no data marshaling or unmarshalling and
the results are shown in Figure 8. Seven different matrix
sizes from 10242 to 204802 are compared. Matrix with large
size can no longer fit into memory space in a single GPU.
Therefore, computation can be done only with multiple GPU
devices assigned. The performance scales decently as the
sizes of matrices and the number of GPUs increase. Be-
cause the computation dominates the total execution time
(about 95% based on our breakdown profiling) in this ker-
nel, the computations among the GPUs overlap with high
rate as long as their data are copied in. However, since
data copies onto multiple GPUs are mostly serialized be-
cause of the architecture limitation discussed before, over-
lapping data movement with computation are also impacted.
Thus the optimal and linear scalability was not observed.

The Jacobi kernel in this study is a 2-D version that up-
dates each element in a 2-dimensional matrix. Each update
requires input data from the neighboring elements in four
directions (or the surrounding halo regions). Jacobi com-
putation can be distributed freely in a single dimension or
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Figure 8: Performance result for matrix multiplica-
tion with row distribution

multiple dimensions under the condition that halo regions
for each data subset are available. Parallelization for mul-
tiple accelerators requires data exchanges for the halo re-
gions between devices. In this study, we choose a row-based
BLOCK distribution policy to show the multiple accelerator
support for Jacobi computation. Figure 9 shows the perfor-
mance results. Overall, good scalability was observed from
the study, especially when the data size is large. In this
kernel, as shown in Figure 2, there are three major compu-
tational intensive parts; the first one is the data exchanging
kernel for moving data from array u to uold, the second
one is the halo region exchange operations, and the third
one is the main Jacobi kernel. Our profiling experiments
show each of the three kernels takes 24%, 34% and 42% of
the total execution time, respectively. As mentioned earlier,
the halo region exchange operation is a collective operation,
which requires a barrier before the operation, and then an-
other barrier following this operation. These two barriers
in each outer iteration introduce large amount of overhead
to the execution. Moreover, since halo region exchange in-
volves more than one GPUs to communicate through the
PCIe switch. It will introduce more overhead from the hard-
ware with more number of GPUs are involved. In the lat-
est GPU hardware, communication between GPU devices
can go through GPUDirect without interfering CPU. Our
runtime implementation will check peer-to-peer (P2P) com-
munication support prior to any data movements between
GPU devices. The runtime automatically switches between
two communication schemes: with GPUDirect to avoid CPU
overhead, or relaying data to CPU memory to complete the
data transfer.

6. RELATED WORK
There has been extensive research on the single GPU sup-

port with high-level directive-based programming models.
Tian et al. [19] and Reyes et al. [15] have developed two
open source OpenACC compilers using two different com-
piler frameworks. Liao et al. [11] has included the OpenMP
accelerator support in the ROSE compiler. All of this work
focuses on the single accelerator support, and even the spec-
ification of OpenACC and OpenMP have not defined any
support for multiple accelerators.
Although these high-level programming models lack such

Figure 9: Performance result for 2D Jacobi

support, users can use the hybrid programming model to
utilize multiple accelerators. Xu et al. [20] used OpenMP +
OpenACC to utilize multiple GPUs attached in a multi-core
system (a single node of a cluster) and explained how to do
the inter-GPU communication with OpenMP synchroniza-
tion and OpenACC data synchronization primitives. Hart
et al. [8] used Co-Array Fortran (CAF) + OpenACC and
Levesque et al. [10] used MPI + OpenACC to utilize multi-
GPU in GPU cluster. The inter-GPU communication in
these cases are managed using approach similar to distributed
shared memory model. In this hybrid model work, explicitly
calls to partition the task and move the necessary data to
each GPU are required.

StarPU [3] and XKaapi [7] use a runtime library approach
to scheduling tasks in multiple accelerators. StarPU relies on
a cost model for scheduling tasks while XKaapi uses work-
stealing. Without compiler support, users of these libraries
have to manually write the offloaded code to a particular
accelerator. SkelCL [18] provides a set of high-level abstrac-
tions to express computation: pre-implemented parallel pat-
terns (skeletons) for computation and container data types
for vectors and matrices. However, reduction and halo re-
gion exchange are not supported. Similarly, SkePU [5] is a
C++ template library with generic skeletons and contain-
ers for multi-GPU systems. Our work uses a directive-based
approach with less intrusive changes to existing codes.

There are many studies focusing on optimizing one partic-
ular type of applications for multiple accelerators. FLAME [14]
uses a high-level notation to express dense linear algebra op-
erations and a runtime scheduling system for targeting mul-
tiple CPUs and GPUs. Song et al. [17] used static data par-
titioning and dynamic distributed scheduling to solve dense
linear algebra problems on heterogeneous GPU-based clus-
ters. Three levels of data split were used to share work
among nodes, within nodes, and between CPUs and GPUs.
PARTANS [12] is an autotuning framework for stencil com-
putation on multiple GPUs. It can automatically optimizes
data distribution depending on problem size and GPU hard-
ware features, including PCIe interconnect configurations.
In comparison, our efforts aim to have high-level, general-
purpose programming extensions for multiple GPUs.

OmpSs [4] can annotate an application with directives to
make the original single GPU program run in parallel on
multi-GPUs within a node, or across nodes in a cluster.
However, the code and data region to be offloaded still need
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to be programmed manually by the user. Komoda et al.
[9] extended the OpenACC programming model to support
multi-GPUs in a shared memory system. It proposed a new
directive to specify the range of indices for one iteration of
the loop so that the compiler and runtime do not need to
replicate the data in all GPUs, and only move the required
amount of data based on certain distribution policy. The
inter-GPU communication is transparently managed by the
runtime so the user does not need to consider the existence
of the underlying GPUs. It also proposed another directive
to solve the array reduction problem to overcome the sup-
port of only scalar reduction limitation in OpenACC model.
Our work enables explicit control over data and loop distri-
bution among multiple accelerators in OpenMP. Compared
to OpenACC, OpenMP already has the worksharing sup-
port in multiple host threads. Our work demonstrates that
the existing worksharing capability in a high-level program-
ming model can be extended to target a multi-core shared
memory system connected with multiple accelerators.

7. CONCLUSION AND FUTURE WORK
In this paper, we explored the language extensions re-

quired in high-level directive-based programming models to
express the additional semantics for leveraging multiple ac-
celerators within a single shared-memory system. Using
OpenMP as a baseline, we proposed a set of extensions to
the target-family directive to express multiple devices, vir-
tual topology of devices, data distribution, halo region han-
dling, and loop distribution. With these extensions, pro-
grammers can easily to exploit multiple accelerators using
simple directives and clauses to annotate data and computa-
tion distribution for offloading execution. Based on an exist-
ing OpenMP research compiler, we further defined the cor-
responding compiler transformation and runtime support to
implement the newly proposed multi-accelerator directives.
Preliminary evaluation using a few kernels has demonstrated
good scalability of our implementation when using multiple
GPUs.
In the future, we plan to improve the performance of using

multiple accelerators, such as overlapping computation and
data transferring and data restructuring for improved GPU
memory performance. We will also extend our work to sup-
port multiple accelerators attached to multiple networked
computation nodes. Finally, we will explore how heteroge-
neous, single-node programming models can interact with
programming models (e.g. MPI) targeting multiple nodes
with distributed physical memory.
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